Kinematic structure of the low mass protostellar core IRAS 15398-3359

F. S. Tabatabaei¹, E. Redaelli¹, P. Caselli¹, and F. O. Alves¹

¹ Centre for Astronomical Studies, Max-Planck-Institute für extraterrestrische Physik, Gießenbachstraße 1, 85749 Garching bei München, Germany

We investigate the kinematic properties of a young class 0 object, IRAS 15398-3359, a low-mass protostar located in the Lupus I molecular cloud. Lupus I appears the least evolved component of the Lupus complex [1]. It is an ideal place to study the early stages of low-mass star formation, and the core is known as the magnetized core [2],[3]. We observed the transitions of two abundant molecules, C¹⁸O (2-1) and DCO⁺(3-2). Due to the different critical densities, higher for DCO⁺ than for C¹⁸O, DCO⁺ traces the denser component closer to the central protostar, while C¹⁸O traces the more extended and tenuous gas in the filamentary structure. The observations were performed with the Atacama Pathfinder EXperiment (APEX) single-dish antenna with a size of 28" at 216 GHz. These data will help us study the kinematics of IRAS15398 at different scales.

To reach our goal we perform a Gaussian fitting on the molecular data, obtaining maps of linewidth, centroid velocity, and column density for each species. Along the filament, a small velocity gradient can be seen, which could be linked to ongoing accretion towards the central object. We find a small velocity gradient toward the center in the east-west direction which could be due to the rotation of the core. Then the rotation axis would lay in the north-south direction, close to the direction of the detected bipolar outflows found by [3]. The mean velocity dispersion of the gas in the filament is 0.13 km s⁻¹ based on DCO⁺ analysis and becomes broader toward the center: 0.18 km s⁻¹. This increase is linked to the protostellar activity, heating the surrounding material. We also calculate the protostellar mass: $M \sim 0.4M \odot$. We plan to compare the kinematic structure obtained from the spectroscopic data to the magnetic field morphology unveiled by [3], in order to study the relation between magnetic fields and gas motions.

The centroid velocity map obtained fitting the observed DCO⁺ (left) and C¹⁸O (right) data, the star represents the position of the protostellar. The contours represent $N(H_2)$ column density as derived from *Herschel* data levels:[1.2,2.2,3.2]×10²² cm⁻².

References

- [1] Rygl, K. L. J., Benedettini, M., Schisano, E., et al. 2013, A&A, 549, L1
- [2] Franco, G. A. P., & Alves, F. O. 2015, ApJ, 807, 5
- [3] Redaelli, E., Alves, F. O., Santos, F. P., et al. 2019, A&A, 631, A154