Kinematic structure of the low mass protostellar core
IRAS 15398-3359

F. S. Tabatabaei1, E. Redaelli1, P. Caselli1, and F. O. Alves1

1 Centre for Astronomical Studies, Max-Planck-Institute für extraterrestrische Physik,
Gießenbachstraße 1, 85749 Garching bei München, Germany

We investigate the kinematic properties of a young class 0 object, IRAS 15398-3359, a low-mass protostar located in the Lupus I molecular cloud. Lupus I appears the least evolved component of the Lupus complex [1]. It is an ideal place to study the early stages of low-mass star formation, and the core is known as the magnetized core [2],[3]. We observed the transitions of two abundant molecules, 13CO (2-1) and DCO$^+$ (3-2). Due to the different critical densities, higher for DCO$^+$ than for 13CO, DCO$^+$ traces the denser component closer to the central protostar, while 13CO traces the more extended and tenuous gas in the filamentary structure. The observations were performed with the Atacama Pathfinder EXperiment (APEX) single-dish antenna with a size of 28″ at 216 GHz. These data will help us study the kinematics of IRAS15398 at different scales.

To reach our goal we perform a Gaussian fitting on the molecular data, obtaining maps of linewidth, centroid velocity, and column density for each species. Along the filament, a small velocity gradient can be seen, which could be linked to ongoing accretion towards the central object. We find a small velocity gradient toward the center in the east-west direction which could be due to the rotation of the core. Then the rotation axis would lay in the north-south direction, close to the direction of the detected bipolar outflows found by [3]. The mean velocity dispersion of the gas in the filament is 0.13 km s$^{-1}$ based on DCO$^+$ analysis and becomes broader toward the center: 0.18 km s$^{-1}$. This increase is linked to the protostellar activity, heating the surrounding material. We also calculate the protostellar mass: $M \sim 0.4 \, M_\odot$. We plan to compare the kinematic structure obtained from the spectroscopic data to the magnetic field morphology unveiled by [3], in order to study the relation between magnetic fields and gas motions.

The centroid velocity map obtained fitting the observed DCO$^+$ (left) and 13CO (right) data, the star represents the position of the protostellar. The contours represent N(H$_2$) column density as derived from Herschel data levels:$[1.2,2.2,3.2] \times 10^{22}$ cm$^{-2}$.

References