From Core to Protostar: A Streamer Feeds a Young Planet-Forming Disk

Dominique M. Segura-Cox1,★, Jaime E. Pineda2, Anika Schmiedeke2, Paola Caselli2, and Maria Jose Maureira2

1Department of Astronomy, The University of Texas at Austin, 2500 Speedway, Austin, TX, 78712, USA
2Max-Planck-Institut für Extraterrestrische Physik (MPE), Giessenbachstrasse 1, 85748 Garching, Germany

★NSF Astronomy and Astrophysics Postdoctoral Fellow

Recently towards young and embedded protostars, accretion streamers that funnel material from cores and envelopes down to disk scales have been found [1]. These streamers may have a profound impact on the formation and evolution of disks. IRS 63 is a Class I protostar with the youngest-known ringed dust disk [2], indicating that planet formation is either already underway or may soon commence. Using ALMA observations, we have found an accretion streamer in H^{13}CO+ that directly feeds the disk from the envelope, with kinematics that can be modeled with an analytic streamline of a collapsing and rotating core [3]. With these observations, the streamer extends out to ~1,500 au and truncates at ALMA’s primary beam. At the larger core scale, Herschel column density maps show that the streamer appears to originate from a reservoir of material to the north of the protostar [4]. With IRAM 30m data, we probe the kinematics of the larger core scale to determine from how far away the streamer feeds this young planet-forming disk.

References