APEX at the QSO MUSEUM: Molecular gas reservoirs associated with z ~ 3 quasars and their link to the extended Lyα emission

Muñoz-Elgueta, N.¹, Arrigoni Battaia, F.¹, and Kauffmann, G.¹

¹ Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str 1, D-85748 Garching bei München, Germany

Optical surveys routinely report the detection of cool gas (T $\sim 10^4$ K) reservoirs (as traced mainly by Lyman-alpha (Ly α) emission) extending

on halo scales around $z\sim3$ quasars (e.g., [1], [2], [3] and [4]), but little or nothing is known about the molecular gas reservoir surrounding the targeted objects. In this poster, I will present an APEX/SEPIA180 spectroscopic survey (~200 hours, [5]) of the CO(6-5), CO(7-6) and [CI](2-1) emission lines for a sample of nine $z\sim3$ quasars from the QSO MUSEUM survey [6], which have similar UV luminosities, but very diverse Ly α nebulae. Using these CO and [CI] observations, we constrain the molecular gas masses to be M_{H2} = (0.4-6.9) x10¹¹ M $_{\odot}$ for the detected sources, and M_{H2} < 1.1 x10¹¹ M $_{\odot}$ for non-detections. We discuss their link with the Ly α properties on larger scales. In particular, we find large velocity shifts (from ~-400 to ~+1200 km s⁻¹) of the Ly α nebulae with respect to the now available molecular redshifts in five sources, suggesting turbulent inflows/outflows around these quasars. We also find that the two most massive molecular reservoirs in our sample are associated with the dimmest and smallest Ly \Box nebulae. From this, we speculate that obscuration from the host galaxy, due to physical properties or geometry, could reduce the escape of ionizing and Ly \Box photons emitted by the quasar, ultimately reducing the emission from the cool CGM.

References

- [1] Borisova et al., ApJ, 831, 39 (2016)
- [2] Arrigoni Battaia et al., A&A, 631, 18 (2019)
- [3] Cai et al., ApJS, 245, 23 (2019)
- [4] Farina et al., ApJ, 887, 196 (2019)
- [5] Muñoz-Elgueta et al., accepted for publication in MNRAS (2022)
- [6] Arrigoni Battaia et al., MNRAS, 483, 3162 (2019)