The chemical footprint of AGN feedback in the outflowing circumnuclear disk of NGC 1068.

K.-Y. Huang¹, S. Viti¹,², J. Holdship¹, S. García-Burillo³, K. Kohno⁴, A. Taniguchi⁵, S. Martín⁶,⁷, R. Aladro⁸, A. Fuente³, M. Sánchez-García⁹

¹ Leiden Observatory, Leiden University, PO Box 9513, 2300 RA Leiden, The Netherlands
² Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, UK
³ Observatorio Astronómico Nacional (OAN-IGN)-Observatorio de Madrid, Alfonso XII, 3, 28014-Madrid, Spain
⁴ Institute of Astronomy, The University of Tokyo, Osawa, Mitaka, Tokyo 181-0015, Japan
⁵ Division of Particle and Astrophysical Science, Graduate School of Science, Nagoya University, Furocho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
⁶ European Southern Observatory, Alonso de Córdova, 3107, Vitacura, Santiago 763-0355, Chile
⁷ Joint ALMA Observatory, Alonso de Córdova, 3107, Vitacura, Santiago 763-0355, Chile
⁸ Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn, Germany
⁹ Centro de Astrobiología (CSIC/INTA), Ctra de Torrejón a Ajalvir, km 4, 28850 Torrejón de Ardoz, Madrid, Spain

In the nearby (D=14 Mpc) AGN-starburst composite galaxy NGC 1068, it has been found that the molecular gas in the CND is outflowing, which is a manifestation of ongoing AGN feedback (García-Burillo et al. 2014). The induced interaction between the AGN ionized wind & jet with the molecular gas on the CND has produced large-scale molecular shocks on spatial scales of up to 400pc from the AGN. The outflowing gas has a large span of velocities, which likely drive different shock chemistry signatures at different locations in the CND. In this talk we are presenting our recent ALMA multi-line molecular study (Huang et al. 2022) using SiO and HNCO as tracers of chemical differentiation across the CND. With a radiative transfer analysis coupled with Bayesian inference processes, we are able to determine the gas properties of the potentially shocked gas in the CND.