Gas and Star Formation from HD and Dust Emission in a z~5.7 Strongly Lensed Starburst Galaxy

G. C. Jones¹², R. Maiolino¹² P. Caselli³, and S. Carniani⁴

¹Cavendish Laboratory, University of Cambridge, 19 J. J. Thomson Ave, Cambridge CB3 0HE, UK
²Kavli Institute for Cosmology, University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK
³Centre for Astrochemical Studies, Max-Planck-Institute for Extraterrestrial Physics, Giessenbachstrasse 1, D-85748 Garching, Germany
⁴Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa, Italy

The molecular gas content of high-redshift galaxies is a highly sought-after property. However, H₂ is not directly observable in most environments, so its mass is probed through other emission lines (e.g. CO, [CI], [CII]), or through a gas-to-dust ratio. Each of these methods depends on several assumptions and are best used in parallel. In this work, we extend an additional molecular gas tracer to high-redshift studies by observing hydrogen deuteride (HD) emission in the strongly lensed z = 5.656 galaxy SPT0346~52 with ALMA. While no HD(1–0) emission is detected, we are able to place an upper limit on the gas mass of $M_{H_2} < 6.4 \times 10^{11} M_{\odot}$. This is used to find a limit on the L_{CO} conversion factor of $\alpha_{CO} < 5.8 M_{\odot} (K \text{ km s}^{-1} \text{ pc}^2)^{-1}$. In addition, we construct the most complete spectral energy distribution of this source to date and fit it with a single-temperature modified blackbody using the nested sampling code MULTINEST, yielding a best-fitting dust mass $M_{dust} = 10^{8.92 \pm 0.02} M_{\odot}$, dust temperature 78.6 ± 0.5 K, dust emissivity spectral index $\beta = 1.81 \pm 0.03$, and star formation rate SFR = 3800 ± 100 M yr⁻¹. Using the continuum flux densities to estimate the total gas mass of the source, we find $M_{HI} < 2.4 \times 10^{11} M_{\odot}$, assuming subsolar metallicity. This implies a CO conversion factor of $\alpha_{CO} < 2.2$, which is between the standard values for MW-like galaxies and starbursts. These properties confirm that SPT0346~52 is a heavily starbursting, gas-rich galaxy.

References