Gas and Star Formation from HD and Dust Emission in a z~5.7 Strongly Lensed Starburst Galaxy

G. C. Jones^{1,2}, R. Maiolino^{1,2} P. Caselli³, and S. Carniani⁴

¹Cavendish Laboratory, University of Cambridge, 19 J. J. Thomson Ave., Cambridge CB3 0HE, UK

²Kavli Institute for Cosmology, University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK

³Centre for Astrochemical Studies, Max-Planck-Institute for Extraterrestrial Physics, Giessenbachstrasse 1, D-85748 Garching, Germany

⁴Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa, Italy

The molecular gas content of high-redshift galaxies is a highly sought-after property. However, H₂ is not directly observable in most environments, so its mass is probed through other emission lines (e.g. CO, [CI], [CII]), or through a gas-to-dust ratio. Each of these methods depends on several assumptions and are best used in parallel. In this work, we extend an additional molecular gas tracer to high-redshift studies by observing hydrogen deuteride (HD) emission in the strongly lensed z = 5.656 galaxy SPT0346–52 with ALMA. While no HD(1-0) emission is detected, we are able to place an upper limit on the gas mass of M_{H2} < 6.4 × 10¹¹ M_{solar} . This is used to find a limit on the L_{CO} conversion factor of α_{CO} < 5.8 M_{solar} $(K \text{ km s}^{-1} \text{ pc}^2)^{-1}$. In addition, we construct the most complete spectral energy distribution of this source to date and fit it with a single-temperature modified blackbody using the nested sampling code MULTINEST, yielding a best-fitting dust mass $M_{dust} = 10^{8.92 \pm 0.02} M_{solar}$, dust temperature 78.6 \pm 0.5 K, dust emissivity spectral index β = 1.81 \pm 0.03, and star formation rate SFR = 3800 ± 100 M yr⁻¹. Using the continuum flux densities to estimate the total gas mass of the source, we find $M_{H2} < 2.4 \times 10^{11} M_{solar}$, assuming subsolar metallicity. This implies a CO conversion factor of α_{CO} < 2.2, which is between the standard values for MW-like galaxies and starbursts. These properties confirm that SPT0346–52 is a heavily starbursting, gas-rich galaxy.

References

[1] Jones G. C., Maiolino R., Caselli P., Carniani S., MNRAS 498, 4109 (2020)